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ABSTRACT

A lightweight vision-based model, GENet, is proposed to overcome the limitations of conventional missing-
seed detection systems, which are highly sensitive to seed characteristics and constrained by slow response
and complex configuration. Deployed on a small precision seeder featuring an oblique hook-shaped spoon-
type metering device, GENet integrates Ghost Modules, C3Ghost structures, and an ECA attention mechanism.
Experiments demonstrate an mAPso_g5 of 85.2%, accuracy of 99.9%, and 185 FPS inference speed on the
Jetson AGX Xavier platform, while reducing model parameters by over 40%. Validation on the JPS-12 test
bench confirms its robustness, providing an efficient solution for intelligent precision seeding.
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INTRODUCTION

Hilly and mountainous regions account for approximately 70% of China’s total land area (Luo, 2011),
making the improvement of agricultural mechanization in these areas a critical priority. At present, there is a
significant demand for precision seeding equipment suited to such terrains. Precision seeding technology not
only enhances land utilization efficiency and seeding uniformity but also contributes to increased crop yields.
However, missing seeds remain a notable challenge in precision sowing operations. Its occurrence is closely
related to factors such as seed box depletion, metering device malfunction (Che et al., 2017), complex field
environments, and non-uniform travel speed of the seeder (Zhang et al., 2022; Yang et al., 2022), all of which
can ultimately lead to reduced crop productivity. Therefore, integrating a missing-seed detection and counting
module into the seed metering device is of great importance. Such a module can (1) provide real-time alerts
to operators in the event of abnormal seeding, thereby supporting timely inspection and reseeding, and (2)
record the entire seeding process to quantitatively evaluate operational performance.

In recent years, scholars worldwide have developed a variety of sensor-based techniques for missing-
seed detection and counting. Wang et al. (2023) designed a mechanical device that integrates missing-seed
detection and reseeding functions. The device continuously monitors the filling state of the primary seed cells
via a cross-type probe rod and actuates a locking lever to control the reseeding mechanism. However, this
approach exerts mechanical pressure on the seeds, which may cause physical damage. Okopnik and Falate
(2014) utilized infrared sensors and microcontrollers to monitor maize seed spacing, while Zhang Xuejun et al.
(2022) employed a laser through-beam sensor to detect seed pickup conditions in cotton precision hill planters.
These optical methods, however, offer limited detection ranges and require high installation precision, making
them better suited for internal metering systems in compact planters. Zhang et al. (2022) proposed a fiber-
optic sensor—based detection and automatic compensation method, whereas Zagainov et al. (2023) developed
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a line-laser and phototransistor-array counting sensor capable of scanning the entire discharge region at the
seed-tube outlet. Yet, the downstream placement of such sensors allows insufficient time for reseeding. Wang
et al. (2024) introduced a spatial-capacitance-based detection method suitable for large seeds such as
potatoes, though its sensitivity to small seeds remains limited due to minimal capacitance variation. Ding et al.
(2019) designed a thin laser—photovoltaic monitoring device that achieved detection accuracies of 98.6% for
rapeseed and 95.8% for wheat, although performance varied across seed types. Rossi et al. (2023) combined
piezoelectric sensors with a VTPD-AM algorithm to monitor the seeding of maize, soybean, and sunflower,
and Ding et al. (2017) enhanced this approach by introducing a recessed-substrate piezoelectric film structure
that improved the resolution of high-frequency seed-flow detection. However, piezoelectric methods rely on
contact-based sensing, which can disturb seed motion and impair metering accuracy. Karayel et al. (2006)
employed high-speed imaging to analyze seed fall velocity and spacing for seeding-quality assessment, but
the high cost and operational complexity of such equipment hinder large-scale field adoption. Karimi et al.
(2015) developed an automated acoustic detection system that captures voltage-pulse signals produced when
wheat, maize, and pelleted tomato seeds strike a steel plate; however, this method is highly susceptible to
ambient noise and vibration. Xie et al. (2022) utilized a 24 GHz microwave-signal generation and intermediate-
frequency pulse-analysis technique combined with a voltage-signal computational model for maize seed
detection, though its accuracy deteriorates under high-humidity conditions.

The rapid development of deep learning has introduced new opportunities for agricultural operation
monitoring (Wen et al., 2025). Single-stage object detection algorithms, represented by the YOLO series, have
been widely applied in smart agriculture tasks such as fruit and vegetable harvesting and pest monitoring (Wen
et al., 2024; Tao et al., 2024). However, their application in seeder missing-seed detection remains limited.
Zhao et al. (2025) adopted an improved YOLOv5s-based detection and tracking algorithm to evaluate the
performance of high-speed maize metering devices; yet, their work remained confined to laboratory settings
without field validation.

To address these challenges, this study focuses on a small precision seeder equipped with an oblique
hook-shaped spoon-type metering device, which is well-suited for hilly and mountainous terrains. A novel
missing-seed detection and counting model, termed GENet, is developed based on an improved YOLOv11n
architecture. The proposed approach accurately identifies missing seeds and performs real-time counting,
providing sufficient response time for reseeding operations. Compared with traditional sensor-based methods,
GENet is independent of seed type and less affected by seeding speed, provided that the camera frame rate
is adequate. These advantages highlight its superior robustness and strong potential for practical application
in intelligent precision seeding systems.

MATERIALS AND METHODS
Structure and Working Principle of the Seed Metering Device

The Oblique Hook-Shaped Spoon-Type Small Precision Seed Metering Device mainly comprises a
seed box, spoon wheel, and side cover (Fig. 1). The seed box features a bottom discharge outlet, while the
side cover is bolted to the housing. The spoon wheel rotates smoothly around a central shaft, and its outer
edge contains V-shaped grooves with seed scoops, forming cavities that hold single seeds such as maize or
soybean. During rotation, the device sequentially performs seed picking, cleaning, and dropping, achieving
single-grain precision metering. Its compact and stable design ensures reliable operation for subsequent
missing-seed detection.

Fig. 1 - Structure of the oblique hook-shaped spoon- Fig. 2 - Working principle of the spoon-wheel seed
type precision seed metering device metering device
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As shown in Fig. 2, the metering process includes four stages: seed picking, primary cleaning,
secondary cleaning, and seed dropping. In seed picking, seeds enter the spoon cavity by gravity and agitation.
During cleaning, excess seeds fall off, leaving one per cavity. Secondary cleaning removes residual seeds
while retaining a single seed for delivery. In the final stage, as the spoon wheel reaches the outlet, the V-
shaped groove releases the seed, which falls by gravity through the guide tube into the furrow. The coordinated
mechanism ensures stable, continuous, and precise single-seed delivery, forming a solid basis for real-time
visual monitoring and precision seeding.

Image Acquisition and Dataset Construction
Image acquisition

To capture dynamic images of the oblique hook-shaped spoon at the seed outlet during operation, an
image acquisition system was installed near the working area of the precision seed metering device. An Intel
RealSense D435i camera was mounted on a dedicated base 5 cm from the spoon surface to ensure a stable
imaging position and consistent viewing angle, thereby minimizing image deviations caused by vibration or
displacement. This setup enabled continuous and clear recording of the entire seeding process without
interfering with normal operation.

For missing-seed detection and seeding count, three categories of images were collected: (1) spoon
carrying a seed, (2) spoon without a seed, and (3) spoon back. The primary classification criterion was whether
the spoon carried a seed, enabling distinction between normal seeding and missing-seed states, while the
total number of seeding events was determined by identifying spoon backs.

To ensure image clarity and lighting stability, LED lights were installed at the detection position for
illumination. To enhance contrast between the target and background, the spoons were fabricated from white
PLA, and other components were made of black PLA, thereby preventing color interference with the seeds.
This configuration effectively differentiates missing-seed events from normal seeding states and provides
reliable visual data for subsequent performance analysis. The image acquisition environment is shown in Fig.3.

Stepper Motor Speed Controller Experimental Platform Precision Seed Meter ~ Fixed Camera Base RealSense D435i
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Fig. 3 - Image acquisition setup

During dataset construction, the camera recorded videos of the seeding window under real operating
conditions, saved in MP4 format. Video frames were extracted to form the raw dataset. Using the Labellmg
tool, image targets were annotated as vacant (empty spoon) or via (spoon back). The annotated dataset was
divided into training, validation, and testing sets ata 7 : 2 : 1 ratio, comprising 2,100, 600, and 300 images,
respectively.

ROI-Based Preprocessing and Data Augmentation

To reduce computational overhead and enhance inference efficiency on edge devices, a static Region
of Interest (ROI) cropping strategy was employed during both dataset preprocessing and inference stages.
This method retains only the task-relevant regions of the image while eliminating redundant background,
thereby significantly reducing input data volume and accelerating model training and inference.

During dataset construction, ROI coordinates were determined using the Labellmg annotation tool and
applied via a Python script to crop the original images, generating samples containing only the detection region.
As shown in Fig. 4(a—c), the yellow dashed box represents the defined ROI, while the excluded background
region—approximately 95% of the total image—is unrelated to the detection task. After ROI cropping, the
image file size decreased from 984 KB to 108 KB, as illustrated in Fig. 4(d—f). During inference, the same ROI
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parameters were applied to incoming frames before model processing, and the detection results were
subsequently mapped back to the original image for visualization and traceability. This strategy effectively
reduces storage and computation requirements while maintaining detection accuracy, achieving a significant
acceleration in both training and inference processes.
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©

Fig. 4 - Dataset images before and after ROI preprocessing
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In practical field applications, the oblique hook-type precision seed metering device is typically mounted
on small power platforms (e.g., walking tractors) operating at high rotational speeds over uneven terrain. These
complex conditions often induce camera vibration or transient sensor faults, resulting in blurred or distorted
images. To realistically simulate such conditions, three types of synthetic disturbances were introduced into
the ROI-cropped images: (1) salt-and-pepper noise, mimicking pixel-level sensor faults; (2) Gaussian blur,
representing motion blur caused by vibration; and (3) combined noise and blur, reflecting compound
interference commonly observed in field operations. As shown in Fig. 5, the processed images effectively
reproduce the visual degradation typical of field seeding environments. This enhanced dataset provides a
reliable foundation for evaluating and optimizing the robustness of the proposed detection model.

Q

Fig. 5 - ROI-cropped images with simulated disturbances

Detection model based on improved YOLOv11
Ghost Lightweight Network

Since the seed metering device must be mounted on a small power platform for field operation, its
overall structure needs to remain compact and lightweight, while still accommodating a camera for real-time
image acquisition. Consequently, the missing-seed detection model must be deployable on edge computing
devices with limited computational resources, requiring a balance between detection accuracy and
computational efficiency. To achieve this, the Ghost Module was introduced as a core component to enable
high-performance feature extraction under low computational cost.

The Ghost Module generates additional ghost feature maps by applying a series of linear
transformations to intrinsic feature maps from each convolutional channel, as shown in Fig. 6. These additional
features enrich the model’s representational capacity while significantly reducing computation compared with
standard convolutional operations. Unlike conventional methods that rely on pointwise and depthwise
convolutions to process spatial information, the Ghost Module first uses standard convolution to generate a
subset of intrinsic feature maps, followed by low-cost linear transformations to expand the channel dimension
and enhance feature diversity. Through identity mapping, it also preserves the semantic consistency between
intrinsic and ghost features, minimizing information loss.
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Building on this, the Ghost Bottleneck structure deepens the network by stacking two Ghost Modules to
enhance feature extraction and representation capability, as illustrated in Fig.7. The first Ghost Module
expands the channel dimension to increase feature diversity, while the second compresses it to match the
original input dimension, thus controlling model complexity. A residual connection is incorporated to improve
gradient flow, enhancing both training stability and efficiency.
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Fig. 6 - Structures of the Ghost Module Fig. 7 - Structures of the Ghost Bottleneck and C3Ghost

Further, the C3Ghost module extends this design by stacking multiple Ghost Bottlenecks and
introducing an additional shortcut branch composed of a single convolutional layer. This branch directly retains
raw input information, preventing feature degradation in deeper layers, while providing a direct gradient
propagation path to improve training convergence. The shortcut and main branches complement each other:
the former preserves low-level details, and the latter extracts high-level abstract features. Overall, the C3Ghost
module achieves an effective balance between lightweight computation and feature richness, making it highly
suitable for edge-deployed missing-seed detection tasks.

Efficient Channel Attention (ECA) Mechanism

To enhance the model’s ability to focus on key information while suppressing redundant or irrelevant
features, the Efficient Channel Attention (ECA) mechanism was integrated into the proposed network.
Compared with the traditional Squeeze-and-Excitation (SE) module, ECA avoids dimensionality reduction,
thereby preserving inter-channel dependencies that might otherwise be weakened during compression.

The core idea of ECA is to employ a one-dimensional convolution to efficiently model local cross-
channel interactions while maintaining dimensional consistency and low computational cost. As shown in Fig.
8, the ECA module first performs global average pooling on the input feature map to obtain global semantic
information. A 1D convolution with kernel size % is then applied to capture local inter-channel dependencies.
The resulting response is passed through a Sigmoid activation function to generate the channel-wise attention
weights @ , which are computed as:

o= Signoid (1D, (C))

where 1D, denotes the one-dimensional convolution with kernel size % , and C represents the channel

descriptor obtained through global average pooling. Finally, these weights are multiplied element-wise with the
corresponding feature channels to enhance informative features and suppress irrelevant ones.

i 4

@ Global Average Pooling ® Element-Wise Product

DOOO0

Fig. 8 - Structure of the ECA mechanism
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This mechanism effectively improves feature representation while maintaining low computational
complexity, resulting in a more robust and efficient detection performance under complex operational
conditions.

GENet Model
To further improve the accuracy and stability of missing-seed detection, a lightweight detection model
named GENet was developed based on the improved YOLOv11n architecture. GENet achieves a balanced

trade-off between model compactness and detection performance. Its overall structure is illustrated in Fig. 9,

and the main improvements are summarized as follows:

1. The standard convolutional layers in both the Backbone and Neck were replaced with Ghost Modules,
which generate additional feature channels through low-cost linear transformations. This approach
significantly reduces redundant convolutional operations while maintaining feature representation
capability, thereby decreasing model parameters and computation cost and improving inference efficiency
on edge devices.

2. The original C3k2 modules in the Backbone and Neck were replaced with C3Ghost modules, which
incorporate Ghost Bottlenecks into the residual structure. The shortcut branch preserves input information
and enhances gradient flow, while the main branch extracts deeper semantic features. Their
complementary interaction improves feature representation. Compared with C3k2, C3Ghost achieves a
better balance between lightweight design and detection accuracy, while substantially increasing inference
speed.

3. The ECA mechanism was embedded at the high-level feature layer (P5) to efficiently capture local inter-
channel dependencies via one-dimensional convolution. By adaptively assigning channel weights, ECA
enhances the model’s focus on key features and suppresses redundant information, thereby improving
recognition ability and detection precision, particularly under complex background conditions.

Overall, GENet combines lightweight structural optimization with adaptive attention enhancement,
achieving high detection accuracy, robustness, and real-time performance suitable for edge-deployed missing-
seed detection tasks.

Backbone GENet: A Missing-Seed Detection Model for @ Small Inclined-
Ghosteony Spoon Precision Seeder Based on an Improved YOLOvIIn
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Fig. 9 - Overall architecture of the proposed GENet model

Experiments and Results
Experimental Environment and Parameter Settings

The experiments were conducted on a workstation running Windows 10 with an NVIDIA Quadro RTX
4000 GPU equipped with 8 GB of VRAM. The model was developed and trained using the PyTorch 1.31.1
deep learning framework with Python 3.10 as the programming language, and CUDA 12.1.0 for GPU
acceleration. The detailed training parameter configurations are listed in Table 1.

Table 1
Training parameter settings

Training Parameter  Value Training Parameter  Value
Optimizer SGD Epochs 100
Workers 0 Batch Size 16

Weight decay 0.0005 Warmup momentum 0.8
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Comparison of Attention Insertion Positions

To determine the optimal insertion position of the Efficient Channel Attention (ECA) mechanism,
comparative experiments were conducted within the Neck of the Ghost lightweight network. Specifically, the
ECA module was inserted at different feature levels - P3, P4, and P5 - as well as in combined configurations
involving two or three simultaneous insertions. The computational complexity and detection performance of
each configuration were evaluated, as summarized in Table 2.

Performance comparison of different ECA insertion positions Table

Position Par(a,\r/ln)e ter Mo(dl\cllegs)ize GF(LG?PS ?Esg? Precision (%) mA(LZS)O 9
No 1.44 3.07 3.8 246.18 99.6 82.8
P3 2.04 4.23 7.5 240.58 99.3 84.6
P4 1.57 3.31 4.0 238.67 98.9 82.7
P5 1.52 3.23 3.9 242.90 99.9 85.2
P3+P4 1.83 3.82 7.3 234.71 99.9 84.7
P3+P5 2.04 4.23 7.5 236.81 99.9 84.2
P4+P5 1.57 3.31 4.0 225.59 99.9 83.6
P3+P4+P5 1.83 3.82 7.3 227.46 99.9 83.5

The results indicate that inserting the ECA mechanism at the P5 layer yields the best performance.
Compared with the baseline YOLOv11n model, the GFLOPs increased by only 2.6%, while mAP 5095 improved
by 2.4%, outperforming all other single-layer configurations. When the attention mechanism was inserted at
multiple layers simultaneously, model complexity and computation increased substantially, but detection
accuracy did not exceed that of the P5-only configuration (85.2%), and inference speed decreased accordingly.

This trend is closely related to the semantic characteristics of feature maps. The P5 layer features lower
spatial resolution but richer semantic information, making it more suitable for channel attention enhancement.
In the present study, the ROI-cropped images have relatively low resolution, with large and semantically rich
target regions containing limited fine details. Therefore, integrating the ECA mechanism at the P5 layer of the
Neck effectively improves detection accuracy with minimal computational overhead, achieving an optimal
balance between lightweight design and high precision.

Ablation Study

To validate the effectiveness of the Ghost Module and the ECA mechanism, ablation experiments were
conducted using YOLOv11n as the baseline model under identical experimental conditions and the same test
dataset. The results are summarized in Table 3.

Table 3
Ablation study of Ghost and ECA mechanisms
. ol 0,
Ghost ECA-P5 ParaE:\nA?ters Mo(d'\cz:as)lze GF(LGO)PS PreC|s)|on (% m/?iz)s)o_gs
x x 2.58 5.21 6.3 99.2 83.1
\ x 1.44 3.07 3.8 99.6 82.8
x v 2.67 5.36 6.4 99.7 85.0
\ v 1.52 3.23 3.9 99.9 85.2

The results demonstrate that incorporating the Ghost lightweight network into YOLOv11n reduces the
number of parameters by 44.2% and GFLOPs by 39.7%, while precision and mAPso-95 increase by 0.4% and
1.7%, respectively. This indicates that the Ghost Module effectively enhances feature representation while
significantly reducing redundant computation.

Furthermore, introducing the ECA attention mechanism at the P5 layer of the Neck improves precision
and mAPso.95 t0 99.7% and 85.0%, respectively. This improvement results from ECA’s ability to model cross-
channel dependencies and adaptively assign feature weights, thereby emphasizing key features. However,
this enhancement also leads to moderate increases in model parameters and computation.

Finally, combining both the Ghost Module and ECA mechanism forms the proposed GENet model.
GENet achieves a 41.1% reduction in parameters, 38.0% smaller model size, and 41.1% reduction in GFLOPs,
while attaining a precision of 99.9% and mAPso-95 of 85.2%.

496



Vol. 77, No. 3 / 2025 INMATEH - Agricultural Engineering

These results confirm the complementary synergy between lightweight structural optimization and
attention-based feature enhancement, enabling GENet to achieve an optimal balance between model
compactness and detection performance.

Comparative Experiments

To further validate the superiority of the proposed GENet model over other lightweight object detection
networks, comparative experiments were conducted using YOLOv7-tiny, YOLOv8n, YOLOv10n, and the
baseline YOLOv11n under identical experimental conditions and the same test dataset. The results are
summarized in Table 4.

Table 4
Comparison of GENet with other lightweight detection models

Model Parameters Model Size GFLOPS Speed Precision MAPs50.05
(M) (MB) Q) (EPS) (%) (%)
YOLOv7-tiny 71 12.3 13.2 216.18 98.1 82.1
YOLOv8n 3.2 6.3 8.7 231.52 98.5 82.7
YOLOv10n 2.7 5.8 6.7 236.18 99.0 82.8
YOLOv11n 2.58 5.21 6.3 236.69 99.2 83.1
GENet 1.52 3.23 3.9 242.90 99.9 85.2

The results indicate that GENet outperforms all comparative models in both detection accuracy and
lightweight efficiency. GENet achieves an mAPso-95 of 85.2%, exceeding YOLOv7-tiny, YOLOv8n, YOLOv10n,
and YOLOv11n by 3.1%, 2.5%, 2.4%, and 2.1%, respectively. In terms of model complexity, GENet contains
only 1.52 M parameters, with 3.9 GFLOPs, a model size of 3.23 MB, and an inference speed of 242.9 FPS,
all superior to the comparison models. These results confirm that GENet maintains high accuracy with minimal
computational cost, demonstrating a clear advantage in performance—efficiency trade-off design.

To further verify practical detection performance, the testimages were evaluated using both GENet and
YOLOv11n, as shown in Fig. 10, where red ellipses highlight missed detections. In both spoon-back and
vacant-cavity detection scenarios, YOLOv11n exhibited five missed detections, while GENet showed only one,
indicating significantly higher accuracy and stability under complex conditions.
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Fig. 10 - Visual comparison of detection performance between YOLOv11n and GENet

497



Vol. 77, No. 3 / 2025 INMATEH - Agricultural Engineering

The missed detections of YOLOv11n were mainly caused by strong reflections on the spoon back,
partial occlusions, motion blur due to high-speed rotation, and weakened cavity textures disturbed by salt-and-
pepper noise (SPN). In contrast, GENet benefits from the synergistic effect of lightweight design and enhanced
discrimination capability:

® The Ghost Module improves inference speed and reduces latency, narrowing the window for

motion-induced missed detections.

® The C3Ghost module strengthens the extraction of geometric and curvature features, maintaining

stability under partial occlusion or pose variation.

® The ECA attention mechanism at the P5 layer adaptively reweights key channels, effectively

suppressing interference from reflection, SPN noise, and motion blur.

Overall, GENet demonstrates superior robustness and precision across both detection tasks. lts
lightweight architecture not only ensures efficient deployment on edge computing devices, but also provides a
reliable and high-performance solution for missing-seed detection and counting in precision seeders.

Edge Deployment and Experiment

To evaluate the deployment performance of the improved GENet model on edge computing devices,
the NVIDIA Jetson AGX Xavier platform was selected. To further enhance inference speed, the model was
accelerated using the TensorRT inference engine. On this platform, GENet achieved an inference speed of
185 FPS, representing a 4.02x improvement compared with the pre-acceleration speed of 41 FPS. These
results demonstrate that the optimized network not only possesses strong lightweight characteristics but also
maintains high inference efficiency under hardware acceleration.

During the actual operation of the oblique hook-type precision seed metering device, the Intel
RealSense D435i camera operated at 60 FPS. In comparison, the 185 FPS inference speed of GENet on the
Jetson AGX Xavier fully meets the real-time processing requirements of such video streams, laying a solid
foundation for its embedded application in precision seeding equipment.

Furthermore, to verify the applicability and generalization of the proposed GENet model in real-world
seeding scenarios, on-site experiments were conducted. During the tests, real-time video streams were
captured using the Intel RealSense D435i camera and processed online by the GENet model. The results are
shown in Fig. 11.

vacant 0.91

vacant 0.90

Fig. 11 - Real-time missing-seed detection and counting results of the GENet model
during maize and soybean seeding

As shown in Fig. 11, GENet exhibited excellent robustness in both maize and soybean seeding
processes, achieving stable missing-seed detection and counting performance. Across continuous video
frames, no significant missed or false detections were observed, confirming the model’s strong reliability and
real-time capability. These findings provide a promising technical foundation and research pathway for
intelligent monitoring of precision seeding operations.
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Verification on the Precision Seeder Test Bench

To verify the reliability of the GENet model for missing-seed detection and counting under actual
operating conditions of the oblique hook-type precision seed metering device, on-site experiments were
conducted using the JPS-12 seeder performance test bench, as shown in Fig. 12. During the tests, an Intel
RealSense D435i depth camera was used to capture seeding images in real time, while the GENet model was
deployed on the NVIDIA Jetson AGX Xavier platform for edge-based real-time detection and computation.

Miniature Precision Seed
Intel RealSense D435i Meter with Oblique-hook
Ly Spoon Mechanism
1

|y Jetson AGX Xavier

Monitor 1

IPS-12 Performance
lest Bench for Seed <
Melering Device y

Fig. 12 - Experimental setup

Experiments were performed under spoon-wheel rotational speeds of 10 rpm, 20 rpm, and 30 rpm for
both maize and soybean, with 10 repetitions per condition and 100 seeds per trial. The GENet model was
responsible for real-time missing-seed detection and counting. To visualize performance, the results were
plotted, as illustrated in Fig.13. The missing-seed detection results show that, as the spoon-wheel speed
increased, the actual missing-seed rate of both crops rose accordingly, reflecting the objective trend of reduced
metering stability at higher speeds. Meanwhile, the detection results of GENet closely matched the actual
measurements: in maize experiments, the maximum deviation between detected and actual missing-seed
rates was less than 0.3%, and in soybean tests, it was below 0.4%. For both crops, GENet accurately captured
the trend of increasing missing-seed rate and maintained high detection accuracy even under high-speed (30
rpm) conditions. The counting results, shown in Fig.14, indicate that GENet achieved extremely high counting
accuracy across all speeds. The average counting accuracy reached 99.86% for maize and 99.90% for
soybean. Although a slight decline was observed with increasing rotational speed, the overall performance
remained stable and consistently above 99.5%. These results confirm the high reliability of GENet in counting
tasks and its ability to meet the stringent accuracy requirements of precision seeding.
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Fig. 13 - GENet performance in missing-seed detection Fig. 14 - GENet performance in counting

In summary, GENet demonstrated stable and high-precision performance across different crops and
operating speeds, with no evident missed or false detections. The results highlight the model’'s robustness and
generalization capability, confirming the feasibility of deep learning—based vision systems for real-time missing-
seed monitoring and counting in precision seeding applications. This provides a solid technical foundation for
the practical deployment of intelligent visual monitoring in field seeding operations.

CONCLUSIONS

This study developed a lightweight vision-based missing-seed detection and counting model, GENet,
which integrates Ghost Modules, C3Ghost structures, and an ECA attention mechanism to achieve an effective
balance between accuracy and computational efficiency. The results confirm that deep learning models can
be feasibly deployed on edge devices, offering a sensor-free and adaptive solution for precision seeding.

499



Vol. 77, No. 3 / 2025 INMATEH - Agricultural Engineering

Compared with existing lightweight networks such as YOLOv7-tiny, YOLOv8n, YOLOv10n, and
YOLOv11n, GENet achieved superior accuracy (99.9%) and inference speed (185 FPS) with fewer
parameters. This demonstrates that structural optimization and attention enhancement not only reduce
computational cost but also strengthen robustness under variable field conditions—an essential factor for real-
time agricultural applications.

Bench validation on the JPS-12 precision seeder test platform further verified the model’s stability and
generalization, with deviations between detected and actual missing-seed rates remaining below 0.4%. These
findings highlight GENet’s capability for multi-crop adaptation and practical deployment in intelligent precision
seeding systems, providing valuable insights for integrating edge computing and deep learning in future smart
agricultural machinery.
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